Abstract
To write differential state equations of investigated actuating devices in the needed Cauchy’s normal form, we must abandon the traditional theory of electrical circuits for the theory of electromagnetic circuits. In this work, the known and developed new mathematical models for the analysis of special states have been involved. For solving this problem, it is necessary, at first, to construct a mathematical model of the actuating device. This model is based on the construction of a monodromy matrix, and simulation of transient and steady-state processes at the same time. To make the numerical analysis more convenient, differential equations for models of electromechanical state are written down in Cauchy's normal form. The algorithm involves the study of transient and stationary processes by decomposing them into constituent parts using the mathematical apparatus of the classical theory of nonlinear differential equations, which are calculated in a relatively simple way. The transitional process is obtained as a result of the differentiation of state equations for given initial conditions. We obtain a steady-state process by the initial conditions that exclude transient response. Such conditions we receive by the iterative Newton method. The proposed method of auxiliary variation equations allowed bypass procedure of differentiation of matrix coefficients over the argument that ensured the possibility of the algorithm application of the method of parametric sensitivity. The method of analysis can be spread to more complex nonlinear systems, such as electric motors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.