Abstract

Abstract. The atmospheric chemistry of sulphuryl fluoride, SO2F2, was investigated in a series of laboratory studies. A competitive rate method, using pulsed laser photolysis (PLP) to generate O(1D) coupled to detection of OH by laser induced fluorescence (LIF), was used to determine the overall rate coefficient for the reaction O(1D) + SO2F2 → products (R1) of k1 (220–300 K) = (1.3 ± 0.2) × 10−10 cm3 molecule−1 s−1. Monitoring the O(3P) product (R1a) enabled the contribution (α) of the physical quenching process (in which SO2F2 is not consumed) to be determined as α (225–296 K)=(0.55 ± 0.04). Separate, relative rate measurements at 298 K provided a rate coefficient for reactive loss of O(1D), k1b, of (5.8 ± 0.8) × 10−11 cm3 molecule−1 s−1 in good agreement with the value calculated from (1−α) × k1=(5.9 ± 1.0) × 10−11 cm3 molecule−1 s−1. Upper limits for the rate coefficients for reaction of SO2F2 with OH (R2, using PLP-LIF), and with O3 (R3, static reactor) were determined as k2 (294 K)<1 × 10−15 cm3 molecule−1 s−1 and k3 (294 K)<1 × 10−23 cm3 molecule−1 s−1. In experiments using the wetted-wall flow tube technique, no loss of SO2F2 onto aqueous surfaces was observed, allowing an upper limit for the uptake coefficient of γ(pH 2–12)<1 × 10−7 to be determined. These results indicate that SO2F2 has no significant loss processes in the troposphere, and a very long stratospheric lifetime. Integrated band intensities for SO2F2 infrared absorption features between 6 and 19 μm were obtained, and indicate a significant global warming potential for this molecule. In the course of this work, ambient temperature rate coefficients for the reactions O(1D) with several important atmospheric species were determined. The results (in units of 10−10 cm3 molecule−1 s−1, k(O1D + N2)=(0.33 ± 0.06); k(O1D + N2O)=(1.47 ± 0.2) and k(O1D + H2O)=(1.94 ± 0.5) were in good agreement with other recent determinations.

Highlights

  • SO2F2, (VikaneTM, ZythorTM, ProFumeTM) is a widely used fumigant of timber, buildings, construction materials and vehicles. 30 years have passed since SO2F2 was first mentioned in the context of a potential influence on stratospheric sulphur chemistry (Crutzen, 1976) and in this period the use of SO2F2 has been extended to the food processing and agriculture industries as a replacement for CH3Br

  • The UV absorption spectrum of SO2F2 has been measured (Pradayrol et al, 1996) and the results demonstrate that photolysis is an insignificant loss process in the troposphere

  • This method relies on the fact that the kinetics of product formation are governed by the rate of decay of the precursor species

Read more

Summary

Introduction

Published by Copernicus Publications on behalf of the European Geosciences Union. Note that SO2F2 is consumed in all processes except for (R1a). The kinetic data obtained in this work is used to estimate the lifetime of SO2F2 in the atmosphere and thus its impact on various aspects of atmospheric science.

Experimental
RR-FTIR
Chemicals
Results
Relative rate determinations of k1b
Reaction with OH in the troposphere
Loss of SO2F2 in the stratosphere
SO2F2 as a greenhouse gas?
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.