Abstract

We establish general conditions for the asymptotic validity of sequential stopping rules to achieve fixed-volume confidence sets for simulation estimators of vector-valued parameters. The asymptotic validity occurs as the prescribed volume of the confidence set approaches 0. There are two requirements: a functional central limit theorem for the estimation process and strong consistency (with-probability-1 convergence) for the variance or "scaling matrix" estimator. Applications are given for: sample means of i.i.d. random variables and random vectors, nonlinear functions of such sample means, jackknifing, Kiefer-Wolfowitz and Robbins-Monro stochastic approximation and both regenerative and nonregenerative steady-state simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.