Abstract
We present the first public release of photometric redshifts, galaxy rest-frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. We exploit a multi-wavelength catalogue ranging from HST to ground-based K and Spitzer IRAC which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multi-band information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone or from a stack of four WFC3 bands. To minimize systematics median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State of the art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification the H band number counts are found in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies intrinsically as faint as H160~32-33 thanks to strong gravitational lensing. The Frontier Fields allow to probe the galaxy stellar mass distribution at 0.5-1.5 dex lower masses, depending on magnification, with respect to extragalactic wide fields, including sources at Mstar~ 10^7-10^8 Msun at z>5. Similarly, they allow the detection of objects with intrinsic SFRs>1dex lower than in the CANDELS fields reaching 0.1-1 Msun/yr at z~6-10. [abridged]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.