Abstract
A model of soil variability as a continuous background process with superimposed point contamination was applied to 569 measurements of metal concentrations (Cr, Ni and Pb) in the topsoils of Sheffield, England. Robust estimators of the variogram were shown to be required to describe spatial variation of the metal concentrations at most sampled locations. This is diagnostic of the presence of a contaminant process. Values of the standardized kriging error from the cross-validation of each datum were used to identify spatial outliers for each metal. The ordinary kriged estimates of Cr, Ni and Pb were mapped after removing the outliers to estimate the background variation. Each of the 35 spatial outliers that occured in gardens have concentrations exceeding their Soil Guideline Value for residential land use with plant uptake, highlighting a potentially significant exposure pathway. The frequent observation of coal and furnace waste at these sites suggests that their dispersal, following domestic use and industrial processes, respectively, represents a significant point contaminant process. There was no evidence for spatial clustering of the point process. However, the spatial outliers of Cr and Ni showed a significant association with disturbed sites identified from historical land use maps, in part due to their prevalence in areas of historical steel manufacture. The magnitude of diffuse pollution for each metal in the urban soil was estimated by removing the spatial outliers and comparing robust measures of location with those from a survey of soils developed over the same parent materials in adjacent rural and peri-urban environments. The Winsorized mean Pb concentrations in urban topsoil (203 mg kg−1) were twice the value in the rural environment (101 mg kg−1), highlighting a very substantial diffuse Pb load to urban soils. The equivalent estimated diffuse components in urban soils for Cr and Ni were, respectively, 25% and 14% higher than the rural soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.