Abstract

In this work, we introduce Ubiquitous Supercomputing for robotics with the objective of opening our imagination to the development of new powerful heterogeneous multi-robot systems able to perform all kind of missions. Supercomputing, also known as High Performance computing (HPC) is the tool that allows us to predict the weather, understand the origins of the universe, create incredibly realistic fantasy movies, send personalized advertisement to millions of users worldwide and much more. Robotics has been mostly absent in its use of HPC but some previous works have lightly flirted with it. With the findings presented in here, we propose a ubiquitous supercomputing ontology, which allows describing systems made up of robots, traditional HPC infrastructures, sensors, actuators and people and exhibiting scalability, user-transparency and ultimately higher computing efficiency. Moreover, we present a technology called The ARCHADE, which facilitates the development, implementation and operation of such systems, and we propose a mechanism to define and automatize missions carried out by ubiquitous supercomputing systems. As a proof of concept, we present a system depicted as Tigers VS Hunters, which illustrates the potential of this technology. The results presented in here are part of a two series work introducing The ARCHADE. This first delivery presents its philosophy and main features. Correspondingly the second part will present a set of use cases and a complete performance benchmark. Supercomputing is part of our lives and it can be found in many research and industrial endeavors. With the ubiquitous supercomputing ontology and The ARCHADE, supercomputing will become part of robotics as well, bringing it therefore everywhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.