Abstract

The floral transition is the switch from vegetative development to flowering. Proper timing of the floral transition is regulated by different pathways and is critical for the reproductive success of plants. Some of the flowering pathways are controlled by environmental signals such as photoperiod and vernalization, others by autonomous signals such as the developmental state of the plant and hormones, particularly gibberellin. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) acts in Arabidopsis as an integrative centre of these pathways, promoting the floral transition. In this work, we show that AGAMOUS-LIKE 42 (AGL42), AGAMOUS-LIKE 71 (AGL71) and AGAMOUS-LIKE 72 (AGL72), which encode MADS-box transcription factors phylogenetically closely related to SOC1, are also involved in the floral transition. They promote flowering at the shoot apical and axillary meristems and seem to act through a gibberellin-dependent pathway. Furthermore SOC1 directly controls the expression of AGL42, AGL71 and AGL72 to balance the expression level of these SOC1-like genes. Our data reveal roles for AGL42, AGL71 and AGL72 in the floral transition, demonstrate their genetic interactions with SOC1 and suggest that their roles differ in the apical and axillary meristems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.