Abstract

The phosphorylation state of the C-terminal domain (CTD) of the RNA polymerase II plays crucial roles in transcription and mRNA processing. Previous studies showed that the plant CTD phosphatase-like 1 (CPL1) dephosphorylates Ser-5-specific CTD and regulates abiotic stress response in Arabidopsis. Here, we report the identification of a K-homology domain-containing protein named SHINY1 (SHI1) that interacts with CPL1 to modulate gene expression. The shi1 mutant was isolated from a forward genetic screening for mutants showing elevated expression of the luciferase reporter gene driven by a salt-inducible promoter. The shi1 mutant is more sensitive to cold treatment during vegetative growth and insensitive to abscisic acid in seed germination, resembling the phenotypes of shi4 that is allelic to the cpl1 mutant. Both SHI1 and SHI4/CPL1 are nuclear-localized proteins. SHI1 interacts with SHI4/CPL1 in vitro and in vivo. Loss-of-function mutations in shi1 and shi4 resulted in similar changes in the expression of some stress-inducible genes. Moreover, both shi1 and shi4 mutants display higher mRNA capping efficiency and altered polyadenylation site selection for some of the stress-inducible genes, when compared with wild type. We propose that the SHI1-SHI4/CPL1 complex inhibits transcription by preventing mRNA capping and transition from transcription initiation to elongation.

Highlights

  • In eukaryotes, gene transcription includes several co-transcriptional processes such as mRNA 59 capping, splicing and polyadenylation

  • Gene transcription includes several co-transcriptional processes such as mRNA 59 capping, splicing and polyadenylation. These co-transcriptional processes are executed by protein enzymes and factors that are recruited to the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) during gene transcription

  • The presented work here attempted to answer the question as to how stress inducible genes are repressed at normal growth conditions

Read more

Summary

Introduction

Gene transcription includes several co-transcriptional processes such as mRNA 59 capping, splicing and polyadenylation. These co-transcriptional processes are executed by protein enzymes and factors that are recruited to the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) during gene transcription. Phosphorylation status of the Ser-2 and Ser-5 in the heptapeptide repeat of the CTD is thought to be important for the co-transcriptional processes and recycling of the RNA polymerase II. Recycling of Pol II requires dephosphorylation of the CTD and several CTD phosphatases are known to function in this process. In Encephalitozoon cuniculi, Fcp dephosphorylates both Ser-5 and Ser-2 [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.