Abstract

Plants are colonized by a variety of bacteria, most of which are not pathogenic. Currently, the plant responses to phyllosphere commensals or to pathogen infection in the presence of commensals are not well understood. Here, we examined the transcriptional response of Arabidopsis thaliana leaves to colonization by common commensal bacteria in a gnotobiotic system using RNA sequencing and conducted plant mutant assays. Arabidopsis responded differently to the model bacteria Sphingomonas melonis Fr1 (S.Fr1) and Methylobacterium extorquens PA1 (M.PA1). Whereas M.PA1 only marginally affected the expression of plant genes (<10), S.Fr1 colonization changed the expression of almost 400 genes. For the latter, genes related to defense responses were activated and partly overlapped with those elicited by the pathogen Pseudomonas syringae DC3000 (Pst). As S.Fr1 is able to mediate plant protective activity against Pst, we tested plant immunity mutants and found that the pattern-recognition co-receptor mutant bak1/bkk1 showed attenuated S.Fr1-dependent plant protection. The experiments demonstrate that the plant responds differently to members of its natural phyllosphere microbiota. A subset of commensals trigger expression of defense-related genes and thereby may contribute to plant health upon pathogen encounter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.