Abstract

The shear and extensional viscosity characteristics have been compared for hyaluronan and two samples of a cross-linked derivative, hylan, of different molecular weights. While shear thinning behavior was observed for all systems in shear flow, strain thickening was observed in extensional flow for the relatively dilute systems. However, there was a progressive transition to shear thinning behavior as the polymer concentration was increased. It is evident from the results that the shear flow techniques alone provide an incomplete picture of the rheological properties of these materials and that extensional flow characteristics are potentially dominant. For example, at relatively high deformation rates of 500 s 1 and above, our results show that the extensional viscosities of aqueous solutions of the various polymers are at least two orders of magnitude greater than their corresponding shear flow viscosities. The incremental differences in viscosity with concentration increased with increasing molecular mass of the polymers and were greater in exensional flow than shear flow. These results demonstrate that the dynamic network structure formed by the higher molecular mass hylans offer potentially better physical and mechanical properties for viscosupplementation of diseased osteoarthritis joints compared with the parent hyaluronan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.