Abstract

Quasi-phase-matched (QPM) materials allow the generation of spectroscopically useful infrared radiation in an efficient and broadly tunable format. Here, we describe several applications of QPM-based light sources to remote and local chemical sensing. The remote systems are gas imagers that employ a fiber-pumped continuous-wave optical parametric oscillator or a microlaser-pumped, diode-seeded optical parametric amplifier as the illumination source. Technology described for local sensing includes a cavity ring down spectrometer that employs a novel optical parametric generator–amplifier to achieve ≥350 cm-1 of contiguous tuning and a long-wave infrared light source based on QPM GaAs. In each case the use of QPM materials in conjunction with effective pump sources instills simplicity and ruggedness into the sensing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.