Abstract

The paper presents the application of noise resistance to evaluate the corrosion behaviour of sensitized AISI type 304 SS in nitric acid of varying concentration (4 N, 12 N, 16 N) and temperature (298 K, 323 K, 348 K). Electrochemical noise data was acquired from a three identical electrode configuration in the required conditions at open circuit potential. The noise resistance was evaluated as the ratio of the standard deviation of the potential to that of the current noise after removing the DC component. The inverse relationship between noise resistance and corrosion rate was exploited to qualitatively assess the corrosion behaviour of AISI type 304 SS in nitric acid. Noise resistance decreased with increase in concentration implying an increase in corrosion rate with increase in nitric acid concentration. An increase in temperature from 298 K to 323 K and 348 K decreased the noise resistance in 4 N and 12 N nitric acid implying higher corrosion rates at higher temperatures. The corrosion rates were similar at 323 K and 348 K in these concentrations. The simultaneous measurement of current and potential noise facilitated the evaluation of the frequency dependence of the noise data to determine the spectral noise resistance ( R sn) and the DC limit of the spectral noise resistance R sn 0 . The results from R sn and R sn 0 also indicated higher corrosion rates at higher concentration and temperature. Also R n and R sn 0 correlated well in 4 N and 12 N nitric acid at 323 K and 348 K while disparity was observed at room temperature in 4 N and 12 N nitric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.