Abstract

This paper describes a method to combine near-infrared spectroscopy and a three layer back-propagation artificial neural network in order to identify official and unofficial rhubarbs. Thirty-three samples were taken as the training set, and 62 samples as the test set. The effects of input node number, learning rate and momentum on the final error and recognition accuracy for the training set, and on prediction accuracy for the test set were determined. A neural network with eight input nodes, a 0.5 learning rate, and a momentum of 0.3 can achieve a recognition accuracy of 100% for the training set and a prediction accuracy of 96.8% for the test set. The method described offers a quick and efficient means of identifying rhubarbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.