Abstract

Recent calculations by J.R. Griffiths and D.R.J. Owen (1971) on the growth of the elastic-plastic stresses for the plane strain bending of a V-notched bar reveal an interesting phenomenon : the stress maximum lies some way before the elastic-plastic interface, inside the plastic zone. Later calculations have confirmed this effect, for both work-hardening and perfectly-plastic von Mises and Tresca materials. At low applied loads the calculated stresses conflict with plastic slip-line field theory. This result is important, because it means that notch stresses before general yield cannot readily be deduced by etching up plastically-yielded zones. This paper explains the conflict analytically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.