Abstract

It is pointed out that the Lyapunov Characteristic Numbers constitute a new tool for determining stability of trajectories of dynamical systems, or, even more generally, of solutions of systems of ordinary differential equations. In contrast with the characteristic exponents, which apply only to periodic solutions, the Lyapunov Characteristic Numbers apply to arbitrary nonperiodic solutions as well. A description is presented of the numerical experiments which have been made in order to investigate the practical value of the Lyapunov Characteristic Number and the Kolmogorov Entropy for the purpose of estimating the stability of trajectories and/or numerical integration methods in celestial mechanics. It is found that the Lyapunov Characteristic Numbers are extremely useful for the classification of the solutions of nonintegrable dynamical systems, especially in order to distinguish between quasi-periodic and chaotic solutions. However, the Lyapunov Characteristics Numbers do not appear to be useful for the purpose of evaluating numerical integration methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.