Abstract

Cis-diamminedichloroplatinum (II) (cisplatin) is one of the most active antitumor agents used in human chemotherapy of non-small cell lung cancer. Cisplatin forms crosslinked DNA adducts and its cytotoxicity has been shown to be mediated by propagation of DNA damage recognition signals to downstream pathways prompting apoptosis. The steps involved in the process include changes in Ca(2+) signaling with dysregulated tumor cell turn-over. Stromal interaction molecules 1 (STIM1), as one of the most potent tumor suppressor genes, are identified as the endoplasmic-reticulum (ER) Ca(2+) sensor controlling store-operated Ca(2+) entry (SOCE) in non-excitable cells, which is main pathway to extracellular Ca(2+) influx. Its role in STIM1 cisplatin-induced apoptosis of non-small cell lung cancer was the focus of study with focus on SOCE inhibitors 2-APB- and SKF96365-cisplatin-induced apoptosis in the non-small cell lung cancer (NSCLC) cell lines A549 and H460. In this experimental model, cisplatin-induced apoptosis and decreased concentration of intracellular Ca(2+) was demonstrated. The expression of STIM1 was significantly higher in carcinoma tissue than in the adjacent non-neoplastic lung tissue. These findings support the conclusion that STIM1 may play an important role in the development of NSCLC which makes drugs that repress the expression of STIM1 to be a potential target for lung cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.