Abstract
Advanced electrolyte design is essential for building high-energy-density lithium (Li) batteries, and introducing anions into the Li+ solvation sheaths has been widely demonstrated as a promising strategy. However, a fundamental understanding of the critical role of anions in such electrolytes is very lacking. Herein, the anionic chemistry in regulating the electrolyte structure and stability is probed by combining computational and experimental approaches. Based on a comprehensive analysis of the lowest unoccupied molecular orbitals, the solvents and anions in Li+ solvation sheaths exhibit enhanced and decreased reductive stability compared with free counterparts, respectively, which agrees with both calculated and experimental results of reduction potentials. Accordingly, new strategies are proposed to build stable electrolytes based on the established anionic chemistry. This work unveils the mysterious anionic chemistry in regulating the structure-function relationship of electrolytes and contributes to a rational design of advanced electrolytes for practical Li metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.