Abstract

The formation of ω-phase under high-pressure torsion (HPT) has been studied in Ti–Fe alloys. Seven alloys with Fe concentration from 0 to 10 wt % have been annealed between 600 and 950 °C, quenched and HPT-treated at 7 GPa, 1 rpm, 5 and 0.1 anvil rotations (equivalent strain eeq = 156 and = 3.1, respectively). The strain after 0.1 rot. corresponds to the transient state of HPT, and that after 5 rot. corresponds to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. A defect-rich high-pressure ω-phase forms after HPT and persists in the samples also after the pressure release. The amount of retained ω-phase after HPT depends on the iron concentration. It increases from 40% in pure titanium, reaches maximum of 95% at 4 wt % Fe and then decreases again to 10% at 10 wt % Fe. It is because the addition of iron influences the lattice parameters in β and ω-phases in a different manner. The minimal lattice mismatch between β- and ω-phases is reached at 4 wt % Fe. A good conformity between the lattices of the β- and ω-phases enhances the probability of the martensitic (diffusionless) β→ω transformation. Based on the XRD and TEM observations, the crystallography and mechanisms of α→ω and β→ω phase transformations (which can be diffusionless as well as controlled by mass transfer) under the influence of pure shear by HPT are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.