Abstract
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets key cell cycle regulatory proteins for degradation. Blockade of APC activity causes mitotic arrest. Recent evidence suggests that the APC may have roles outside the cell cycle. Several studies indicate that ubiquitin plays an important role in regulating synaptic strength. We previously showed that ubiquitin is directly conjugated to GLR-1, a C. elegans non-NMDA (N-methyl-D-aspartate) class glutamate receptor (GluR), resulting in its removal from synapses. By contrast, endocytosis of rodent AMPA GluRs is apparently regulated by ubiquitination of associated scaffolding proteins. Relatively little is known about the E3 ligases that mediate these effects. We examined the effects of perturbing APC function on postmitotic neurons in the nematode C. elegans. Temperature-sensitive mutations in APC subunits increased the abundance of GLR-1 in the ventral nerve cord. Mutations that block clathrin-mediated endocytosis blocked the effects of the APC mutations, suggesting that the APC regulates some aspect of GLR-1 recycling. Overexpression of ubiquitin decreased the density of GLR-1-containing synapses, and APC mutations blunted this effect. APC mutants had locomotion defects consistent with increased synaptic strength. This study defines a novel function for the APC in postmitotic neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.