Abstract

PurposeThe main aim of this paper was to study the self-lubricating behavior and failure mechanism of silver-rich solid film for in-depth analyzing of the friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite.Design/methodology/approachThe friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite sliding against Si3N4 ball was tested under the testing conditions of ball-on-disk wear system. Field emission scanning electron microscopy and electron probe microanalyzer were used to analyze the surface morphology of silver-rich solid film. The main element contents were tested by energy dispersive spectroscopy. Silver phase on wear scar could be well identified using X-ray photo-electron spectroscopy. The theory calculation of shearing stress on wear scar was executed to discuss the local failure mechanism of silver-rich solid film. The lubricating role of silver was also discussed to analyze the anti-friction and anti-wear behavior of silver-rich solid film.FindingsThe friction coefficients and wear rates of TASC gradually reduced at 0-65 min, and approached to small values (0.31 in friction coefficient and 3.10×104 mm3N-1m-1 in wear rate) at 65-75 min. The excellent friction and wear behavior of TASC was mainly attributed to the lubricating property of silver-rich film at 65-75 min. At 12→20 N, surface shearing stress increased up to 146.31 MPa, and exceeded more than the shearing strength (125 MPa) of silver-rich film, which caused the propagating of fatigue crack and the destroying of silver-rich film, leading to high friction and severe wear.Originality/valueIt is important that the self-lubricating behavior and local failure of solid film is explored for further understanding the friction and wear property of TiAl alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.