Abstract

Analysis of Superhydrophobic surfaces is a hot topic recently because of its potential use on drag reduction, lower flow noise, self-cleaning. This paper used VOF model and Lighthill's Acoustic Analogy to simulate the sound pressure of channel flow, and found when fluid flowed across channels, the sound pressure caused by superhydrophobic surfaces was much lower than that of plane surfaces. The macroscale structures and the air stored in the cavities could lower the turbulence kinetic energy, and that could be one of the reasons why flow causes lower flow noise across the superhydrophobic channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.