Abstract

The ionotropic glutamate receptor (GluR) subtype known as the AMPA receptor, which mediates rapid excitatory synaptic transmission in many regions of the nervous system, is composed of four different protein subunits, termed GluRs 1–4. The functional properties of each AMPA receptor are determined by the relative levels of GluRs 1–4 and by post-transcriptional modifications of these proteins through mRNA editing and alternative exon splicing. The present paper reviews the published evidence for (1) localization of mRNAs and immunoreactivity for GluRs 1–4 in the cochlea and subcortical central nervous system auditory pathways of mammals and birds, and (2) involvement of AMPA receptors in synaptic transmission in the auditory system. Recent biochemical and electrophysiological evidence concerning the specialized properties of AMPA receptors on brainstem auditory neurons is also reviewed, along with data concerning how these properties emerge during normal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.