Abstract

It is known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, whereas hemokinin-1 (HK-1), a member of the same tachykinin family as SP, hardly induces thermal hyperalgesia; however, the underlying mechanism remains to be elucidated. Therefore, we aimed to clarify which amino acid of these peptides contributes to the induction of thermal hyperalgesia. When two chimera peptides between the N-terminal region of SP and the C-terminal region of HK-1, and vice versa, SP (1-5)/HK-1 and HK-1 (1-5)/SP, were intrathecally administered, SP (1-5)/HK-1 induced thermal hyperalgesia whereas HK-1 (1-5)/SP had hardly any effect; furthermore, thermal hyperalgesia was induced by only C-terminal fragments of HK-1 and SP. These findings indicate that the N-terminal region of HK-1 is involved in the non-induction of thermal hyperalgesia. Next, we synthesized and intrathecally administered these chimera peptides in which part of the N-terminal region of HK-1 was replaced with that of SP, and vice versa, and all synthesized peptides induced thermal hyperalgesia. Both SP (1-2)/HK-1 and HK-1 (1-4)/SP certainly induced thermal hyperalgesia, although HK-1 and HK-1 (1-5)/SP had hardly any effect; therefore, it is probable that Ser at the 2nd position and Arg at the 5th position of HK-1 may be involved in the non-induction of thermal hyperalgesia. Furthermore, peptides in which amino acid at the 3rd and/or 4th positions of HK-1 was replaced with that of SP were synthesized. Intrathecal administration of HK-1 (1-2,4-5)/SP, but not HK-1 (1-2,5)/SP and HK-1 (1-3,5)/SP, hardly induced thermal hyperalgesia. These findings indicate that three amino acids, Ser, Thr and Arg at the 2nd, 4th and 5th positions of HK-1, respectively, regulate the induction of thermal hyperalgesia by HK-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.