Abstract

ABSTRACTConditional value-at-risk (CVaR) model is a kind of financial risk measure that is extensively supported and accepted by international financial community. Its optimized form can be regarded as an optimized certainty equivalent (OCE) risk measurement. In this paper, we mainly discuss and analyze the strong laws of large numbers and the convergence rate of OCE's estimator under α-mixing sequences. The result shows that the almost sure convergence rate of CVaR estimator is given by the results of OCE estimator. Its convergence rate is inversely proportional to the square root of the sample size under certain conditions. Its effectiveness is verified by simulation experiments for two classical α-mixing sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.