Abstract
A newly identified large-scale submarine landslide on the NW African margin (Agadir Slide) is investigated in terms of its morphology, internal architecture, timing, and emplacement processes using high-resolution multibeam bathymetry data, 2D seismic profiles, and gravity cores. The Agadir Slide is located south of the Agadir Canyon at a water depth ranging from 500 m to 3,500 m, showing an estimated affected area of approximately 5,500 km2. The analysis of the Agadir Slide's complex morphology reveals the presence of two headwall areas and two slide fairways (the Western and Central slide fairways). Volume calculations indicate that ∼340 km3 of sediment were accumulated downslope along the slide fairways (∼270 km3) and inside the Agadir Canyon (∼70 km3). Stratigraphic correlations based on five gravity cores indicate an emplacement age of 142±1 ka for the Agadir Slide. However, its emplacement dynamics suggest that the slide was developed in two distinct, successive stages. The presence of two weak layers (glide planes) is a major preconditioning factor for the occurrence of slope instability in the study area, and local seismicity related to fault activity and halokinesis likely triggered the Agadir Slide. Importantly, the Agadir Slide neither disintegrated into sediment blocks nor was transformed into turbidity currents. The emplacement timing of the Agadir Slide does not correlate with any turbidites cored downslope across the Moroccan Turbidite System.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.