Abstract

Abstract The Aerodyne Inverse Modeling System was developed to enable location and characterization of hazardous atmospheric releases from dispersion and meteorological data. It combines an automatically-generated tangent-linear of SCIPUFF with a cost function tailored for practical applications and a minimization algorithm that can search for multiple instantaneous or continuous sources without requiring an initial guess. In this work AIMS was applied to estimate the sources in 84 FFT 07 cases that included instantaneous and continuous releases for up to four source locations. FFT 07 was a controlled short-range (∼500 m) dispersion test using 100 digiPIDs evenly distributed over an area of 0.5 × 0.5 km. AIMS estimated sources were in average within 90–150 m of the real sources, with the distances from estimated to real source ranging from 0 to 510 m. AIMS performed better estimating the location of instantaneous sources than of continuous ones. It also performed better for single-source situations than for multiple source scenarios and when 16 sensors were used instead of 4. In addition to using stationary sensors, AIMS also has the capability of processing data from mobile sensors. This was applied using model-generated data in an example of a release in a setting similar to an industrial facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.