Abstract

AbstractThe force F required to separate two ice spheres was measured as a function of environmental temperature T, relative humidity H and the strength E of the external electric field in which the spheres were situated. It was found that over the entire attainable range of T and H, F increased rapidly with increasing E. The increased adhesion was not accompanied by an increase in the rate of growth of the ice bridge between the two spheres and is explicable in terms of Davis’s (1964) calculations of the purely electrostatic forces between two spheres situated in an electric field. The experiments indicate that the rate of growth of snowflakes in a cloud by means of ice crystal aggregation will be markedly enhanced if the cloud is highly electrified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.