Abstract

The distortion/interaction or activation strain model (ASM) of chemical reactivity is examined in real space through the interacting quantum atoms (IQA) approach. Attention is paid to the role that the geometrically constrained ASM structures of the fragments play in the chemical interpretation of the driving forces that lead to a given reaction channel. These fictitious intermediate states are necessary in the ASM, but IQA may or may not use them at will. Similarities and differences are highlighted by studying the endo/exo preference rules of simple [4+2] Diels–Alder cycloadditions. Although overall the agreement is reasonable, we warn about a blind use of the plain ASM if no further energy decomposition analyses of its interaction energy are done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.