Abstract

The paper presents a systematic study of acoustic and non-acoustic properties of consolidated porous samples of expanded clay granulates. The effect of the particle size on the acoustic performance of consolidated expanded clays is investigated experimentally and theoretically. This work involves a comparison of the measured and predicted values of the absorption coefficient and normalised acoustic surface impedance data. It is demonstrated that the values of tortuosity and standard deviation in the pore size distribution do not depend significantly on the size of the material aggregate. An empirical expression which links the flow resistivity of the consolidated granular mix has been derived from the measured data. These results pave the way for the development of a simple practical model which will be able to link the acoustic properties of a consolidated granular mix with the characteristic particle dimension and the porosity data. These materials are structurally robust and easy to integrate in buildings and highway structures to control the levels of environmental noise and improve the acoustic quality of spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.