Abstract

The competitive adsorption of aromatic hydrocarbons (benzene, methyl- and ethyl-benzene) and water on FeZSM-5 zeolites have been investigated by means of temperature-programmed desorption coupled with mass spectrometry (TPD/MS). The incorporation of iron in zeolite was done by aqueous ion exchange using dilute solutions of Fe complexes (ferric citrate and ferrous oxalate) and ferric nitrate. Diffuse reflectance UV–Vis spectroscopy and temperature-programmed reduction (TPR) were applied to characterize active sites on investigated zeolites. The existence of different iron species on FeZSM-5 zeolites was revealed. It has been demonstrated that the activity of the Fe exchanged zeolite depends on the iron salt used for ion exchange. The isolated, dispersed ions, which are often considered to be essential for adsorption and catalysis, were obtained with high yield only by ion exchange in the presence of ferrous oxalate. TPD/MS measurements show that aromatic hydrocarbons adsorb on specific, strong active sites in hydrated zeolites. The binding occurred when organic molecules replace water previously adsorbed at the same sites. Benzene showed non-dissociative adsorption/desorption, while new mass fragments were recorded during methyl-benzene and ethyl-benzene desorption implying their dissociative adsorption/desorption on active sites in hydrated zeolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.