Abstract
The equilibrium structure and potential energy surface of magnesium monohydroxide in its ground doublet state, X 2Σ+ MgOH, have been determined from large-scale ab initio calculations using the spin-restricted coupled-cluster method, RCCSD(T), with basis sets of double-through quintuple-zeta quality. The effects of core-electron correlation on the calculated molecular parameters were investigated. The vibrational-rotational energy levels of various MgOH isotopomers were calculated using the variational method. The spectroscopic constants determined are found to be in remarkably good agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.