Abstract

We present a detailed and complete proof of our earlier conjecture on the classification of minimal conformal invariant theories. This is based on an exhaustive construction of all modular invariant sesquilinear forms, with positive integral coefficients, in the characters of the Virasoro or of theA1(1) Kac-Moody algebras, which describe the corresponding partition functions on a torus. A remarkable correspondence emerges with simply laced Lie algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.