Abstract

Mitochondria carry their own genetic material and gene-expression machinery, including ribosomes, which are responsible for synthesizing polypeptides that form essential components of the complexes involved in oxidative phosphorylation (or ATP generation) for the eukaryotic cell. Mitochondrial ribosomes (mitoribosomes) are quite divergent from cytoplasmic ribosomes in both composition and structure even as their main functional cores, such as the mRNA decoding and peptidyl transferase sites, are highly conserved. Remarkable progress has been made recently towards understanding the structure of mitoribosomes, by obtaining high-resolution cryo-electron microscopic (cryo-EM) maps. These studies confirm previous structural findings that had revealed that a significant reduction in size of ribosomal RNAs has caused topological changes in some of the functionally relevant regions, including the transfer RNA (tRNA)-binding sites and the nascent polypeptide-exit tunnel, within the structure of the mammalian mitoribosome. In addition, these studies provide unprecedented detailed views of the molecular architecture of those regions. In this review, we summarize the current state of knowledge of the structure of the mammalian mitoribosome and describe the molecular environment of its tRNA-exit region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.