Abstract

Abstract Disentangling the different stages of the star formation process, in particular in the high-mass regime, is a challenge in astrophysics. Chemical clocks could help alleviate this problem, but their evolution strongly depends on many parameters, leading to degeneracy in the interpretation of the observational data. One of these uncertainties is the degree of CO depletion. We present here the first self-consistent magneto-hydrodynamic simulations of high-mass, star-forming regions at different scales, fully coupled with a nonequilibrium chemical network, which includes C–N–O bearing molecules. Depletion and desorption processes are treated time dependently. The results show that full CO depletion (i.e., all gas-phase CO frozen-out on the surface of dust grains) can be reached very quickly, in one-third or even smaller fractions of the freefall time, whether the collapse proceeds on slow or fast timescales. This leads to a high level of deuteration in a short time, both for typical tracers like N2H+, as well as for the main ion H 3 + , the latter being in general larger and more extended. N2 depletion is slightly less efficient, and no direct effects on N-bearing molecules and deuterium fractionation are observed. We show that CO depletion is not the only driver of deuteration, and that there is a strong impact on D frac when changing the grain size. We finally apply a two-dimensional Gaussian point-spread function to our results to mimic observations with single-dish and interferometers. Our findings suggest that the low-values observed in high-mass star-forming clumps are in reality masking a full-depletion stage in the inner 0.1 pc region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.