Abstract

The analytical solution of 3-D heat conduction problem, including the temperature and thermal flux fields, is one of the important problems that have not been completely solved in solid mechanics. Considering the temperature dependence of material parameters makes the problem more difficult. In this paper, we first reduce the 3-D temperature-dependent heat conduction problem to the solution of 3-D Laplace equation by introducing the intermediate function. Then, the generalized ternary function is proposed, and the general solution of 3-D Laplace equation is given. Finally, the analytical solutions of three specific problems are obtained and the corresponding temperature-thermal flux fields are discussed. The results show that the thermal flux field of 3-D temperature dependent problem is the same as the classical constant thermal conductivity approach result, while the temperature field is different from the classical result. Thermal flux at a planar defect boundary has r?1/2 singularity, and its intensity is proportional to the fourth root of defect width. On the other hand, when blocked by a planar defect, the thermal flux distribution will re-adjusted so that it overflows at the same rate from all parts of the planar defect boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.