Abstract

A conspicuous correlate of the developmental transformation of axonal growth cones to synaptic terminals is a marked increase in synthesis and axonal transport of a methionine-rich, acidic polypeptide of approximately 25 kDa. This polypeptide, designated "super protein" (SuP), is the most prominent species among methionine-labeled proteins conveyed by rapid axonal transport in mature CNS and PNS neurons of warm- and cold-blooded vertebrates. We show here that SuP is identical to SNAP-25, a highly conserved synaptic protein of known primary structure, by immunoprecipitation with anti-SNAP-25 antiserum of SuP labeled with 35S-methionine and transported by retinal ganglion cells of rat and cat. In addition, we show that SNAP-25/SuP is the most prominent species among retinal polypeptides that incorporate 3H-palmitate in vivo, that it is fatty acylated through a hydroxylamine-labile, thioester bond, and that palmitoylated SNAP-25/SuP is axonally transported. Thus, SNAP-25/SuP is a rapidly transported constituent of the presynaptic apparatus and a major neuronal substrate for long-chain fatty acylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.