Abstract

The 2013 M8.3 Okhotsk earthquake involves two primary mechanisms of deep-focus earthquake rupture, mineral phase transformation of olivine to spinel and thermal shear instability. Backprojection imaging of broadband seismograms recorded by the North American and European networks indicates bilateral rupture toward NE and SSE. The rupture paths of the NE segment and other regional M7 earthquakes are confined in narrow regions along the slab contours, consistent with the phase transformation mechanism. However, the SSE rupture propagates a long distance across the slab and aftershocks are distributed across a ~60 km wide zone, beyond the plausible thickness of the metastable olivine wedge, favoring thermal shear weakening. While the NE rupture is only visible at high frequencies, the SSE rupture is consistently observed across a broad-frequency range. This frequency-dependent rupture mode can be explained by lateral variations of rise time controlled by thermal thinning of the slab near its northern end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.