Abstract

Abstract. Paleoclimate reconstructions have identified a period of exceptional summer and winter cooling in the North Atlantic region following the eruption of the tropical volcano Huaynaputina (Peru) in 1600 CE. A previous study based on numerical climate simulations has indicated a potential mechanism for the persistent cooling in a slowdown of the North Atlantic subpolar gyre (SPG) and consequent ocean–atmosphere feedbacks. To examine whether this mechanism could have been triggered by the Huaynaputina eruption, this study compares the simulations used in the previous study both with and without volcanic forcing and this SPG shift to reconstructions from annual proxies in natural archives and historical written records as well as contemporary historical observations of relevant climate and environmental conditions. These reconstructions and observations demonstrate patterns of cooling and sea-ice expansion consistent with, but not indicative of, an eruption trigger for the proposed SPG slowdown mechanism. The results point to possible improvements in future model–data comparison studies utilizing historical written records. Moreover, we consider historical societal impacts and adaptations associated with the reconstructed climatic and environmental anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.