Abstract

Cyclic trinuclear units (CTUs) based on Au(i), Ag(i) and Cu(i) cations, featuring near planar nine-membered coordination rings, represent an important class of metal-organic π-acids/bases with highly adjustable π-acidity/basicity. Their superior π-acidity/basicity coupled with Lewis-acidic and metalmetal bonding sites offers excellent attraction for a wide range of acidic/basic species, and usually followed by noticeable changes of luminescence or charge transfer behaviors. A series of representative cases from the past two decades have been selected herein for such cyclic trinuclear units in both oligomeric and polymeric systems. Their fascinating and profound potential applications related to π-acidity/basicity are highlighted, including molecular absorption and separation, luminescence sensing and detection, organic light-emitting diodes (OLEDs), metal-organic field-effect transistors (MOFETs), molecular wires, and catalysis. The challenges in improving the performance for practical application will also be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.