Abstract
Thapsigargin, an inhibitor of the microsomal Ca2+ pumps, has been extensively used to study the intracellular Ca2+ pool participating in the generation of the agonist-induced Ca2+ signal in various cell types. A dual effect of this agent was observed in bovine adrenal zona glomerulosa cells. At nanomolar concentrations, thapsigargin stimulated a sustained Ca2+ influx, probably resulting from Ca(2+)-store depletion. In contrast, when added at micromolar concentrations, thapsigargin prevented the rise in cytosolic free Ca2+ concentration ([Ca2+]c) induced by K+. This inhibitory effect of thapsigargin on voltage-activated Ca2+ channels was confirmed by measuring Ba2+ currents by the patch-clamp technique. Both low-threshold (T-type) and high-threshold (L-type) Ca2+ channels were affected by micromolar concentrations of thapsigargin. Analysis of the current-voltage relationship for T-type channels revealed that thapsigargin did not modify the sensitivity of these channels to the voltage, but decreased the maximal current flowing through the channels. In conclusion, thapsigargin appears to exert a dual effect on adrenal glomerulosa cells. At lower concentrations, this agent induces a sustained Ca2+ entry, whereas at higher concentrations it decreases [Ca2+]c by blocking voltage-activated Ca2+ channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.