Abstract

Schizophrenia has been linked to disturbed connectivity between large-scale brain networks. Altered thalamocortical connectivity might be a major mechanism mediating regionally distributed dysfunction, yet it is only incompletely understood. We analysed functional magnetic resonance imaging data obtained during resting state from 22 DSM-IV schizophrenia patients and 22 matched healthy controls to directly assess the differences in thalamocortical functional connectivity. We identified significantly higher overall thalamocortical functional connectivity in patients, which was mostly accounted for by difference in thalamic connections to right ventrolateral prefrontal and bilateral secondary motor and sensory (superior temporal and lateral occipital) cortical areas. Voxelwise analysis showed group differences at the thalamic level to be mostly in medial and anterior thalamic nuclei and arising thalamocortical changes to be mostly due to higher positive correlations in prefrontal and superior temporal correlations, as well as absent negative correlations to sensory areas in patients. Our findings demonstrate that different types of thalamocortical dysfunction contribute to network alterations, including lack of inhibitory interaction attributed to the lack of significant negative thalamic/sensory cortical connections. These results emphasize the functional importance of the thalamus in the pathophysiology of schizophrenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.