Abstract

Osteoarthritis (OA) is an age-related disease marked by synovial inflammation and cartilage destruction arising from synovitis, joint swelling and pain. OA therapy that targets the synovium is a promising strategy for mitigating the symptoms and disease progression. Altered activity of the transforming growth factor-β1 isoform (TGF-β1) during aging underlies OA progression. Notably, aberrant forkhead box class O 3 (FOXO3) activity is implicated in the pathogenesis of various age-related diseases, including OA. This study explored the interaction and cross-talk of TGF-β1 and FOXO3 in human osteoarthritis synovial fibroblasts (OASFs). TGF-β1 stimulated FOXO3 synthesis in OASFs, which was mitigated by blocking adenosine monophosphate-activated protein kinase (AMPK) and p38 activity. TGF-β1 also inhibited the expression of miR-92a, which suppresses FOXO3 transcription. The suppression of miR-92a was effectively reversed with the blockade of the AMPK and p38 pathways. Our study showed that TGF-β1 promotes anti-inflammatory FOXO3 expression by stimulating the phosphorylation of AMPK and p38 and suppressing the downstream expression of miR-92a. These results may help to clarify OA pathogenesis and lead to better targeted treatment.

Highlights

  • Osteoarthritis (OA) is marked by synovial inflammation, cartilage destruction, joint swelling and pain

  • transforming growth factor-β1 isoform (TGF-β1) stimulates the expression of forkhead box class O 3 (FOXO3) in human osteoarthritis synovial fibroblasts (OASFs)

  • Stimulation of OASFs with TGF-β1 diminished the mRNA and protein expression of inflammatory mediators, including TNFα, IL-1β, VEGF and CCL2 (Fig. 1B-D). Both TGF-β1 and FOXO3 have been shown to be involved in the pathogenesis of OA, as well as the aging process [10, 19]

Read more

Summary

Introduction

Osteoarthritis (OA) is marked by synovial inflammation, cartilage destruction, joint swelling and pain. Age-associated inflammation is a key contributor to the pathogenesis of OA [1, 2], as a result of continuous mechanical wear and tear and/or age-related modifications of the cartilage matrix. The synthesis of pro-inflammatory and hydrolytic mediators by the inflamed synovium can induce cartilage erosion, which amplifies synovial inflammation, creating a vicious cycle. OA synovial cells maintain arthritic pathologies by synthesizing the inflammatory mediators and matrix degradation enzymes [5,6,7]. Research has begun to focus on synovium-targeted therapy in the attempt to halt the progression and lessen the impact of OA symptoms [8, 9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.