Abstract

Image processing algorithms can be used in computer-aided diagnosis systems to extract features directly from digitized mammograms. Typically, two classes of features are extracted from mammograms with these algorithms, namely morphological and non-morphological features. Image texture analysis is an important technique that represents gray level properties of images used to describe non-morphological features. This technique has shown to be a promising technique in analyzing mammographic lesions caused by masses. In this paper, we evaluate texture classification using features derived from co-occurrence matrices, wavelet and ridgelet transforms of mammographic images. In particular, we propose a false positive reduction in computer-aided detection of masses. The data set consisted of 120 cranio-caudal mammograms, half containing a mass, rated as abnormal images, and half with no lesions. The following texture descriptors were then calculated to analyze the regions of interest (ROIs) texture patterns: entropy, energy, sum average, sum variance, and cluster tendency. To select the best set of features for each method, we applied a genetic algorithm (GA). In the ROIs classification stage, we used the Random Forest algorithm, a data mining technique that separates the data into non-overlapping segments. Experimental results showed that the best classification rates were obtained with the wavelet-based feature extraction using GA for selection of the most relevant features, giving an AUC=0.90.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.