Abstract

Oxygen-free high conductivity copper was subjected to room temperature equal channel angular extrusion of 8 passes using route Bc. The resulting ultra-fine grain copper was then rolled to thickness reductions of up to 96.5% at liquid nitrogen temperatures. Annealed coarse grained copper was rolled to the same strain at room temperature for comparison. Samples from the two routes were isochronally and isothermally annealed, and the microstructure and texture evolution studied by electron back scattered diffraction and x-ray diffraction. Annealing of the ultrafine grained copper led to the development of a strong rotated cube texture from a texture in the rolled material dominated by the Brass component. In contrast the more commonly observed cube texture was found after annealing of the coarse-grained sample. Accompanying the rotated cube texture was the development of a large fraction of boundaries with rotation angle/axis close to 60° <111>.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.