Abstract

Flexible and transparent textile-based conductors are developed by inkjet printing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto polyethylene terephthalate (PET) mesh fabrics. The conductivity–transparency relationship is determined for textile-based conductors with different thicknesses of the printed PEDOT:PSS film. The function of these textile-based conductors is studied in the alternating current powder electroluminescent (ACPEL) devices and compared with indium tin oxide (ITO) glass in an ACPEL device of the same configuration. Textiles coated with conducting polymers are a potential alternative to coated polymer films for flexible, transparent conductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.