Abstract

The parameters of molecular hydrogen adsorption on a tetraoxa[8]circulene monolayer were studied using the density functional theory with dispersion interaction corrections (semi-empirical and analytical). The calculations were carried out using two different approaches to the system wave function representation: atomic-like orbital basis set and plane wave basis. Utilizing a less computationally expensive pseudoatomic basis, it is possible to obtain results for molecular hydrogen adsorption consistent with values calculated with plane waves if the atomic-like basis is optimized and basis set superposition error is corrected for both hydrogen binding energy and geometrical characteristics. Otherwise, the H2 binding energy will be overestimated by 4–6 times (sometimes even more, by 20); and the hydrogen-monolayer distance will be underestimated by 10-20%. The obtained optimized parameters of the pseudoatomic basis set can be used for further study of the modified forms of the tetraoxa[8]circulene monolayer. Moreover, our calculations showed that the hydrogen binding to a pristine tetraoxa[8]circulene monolayer is predominantly van der Waals with an energy of 60–90 meV, which is several times less than the desired range of 200–600 meV. To achieve such values, it will be necessary to modify the surface of the monolayer, creating more active sorption cites, for example, by decorating it with metals or applying structural defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.