Abstract

The photosensitized protein-damaging activity of water-soluble freebase tetrakis([Formula: see text]-methyl-[Formula: see text]-pyridinio)porphyrin (H2TMPyP), and its zinc complex (ZnTMPyP) was investigated using human serum albumin (HSA) as a target protein. These porphyrins bound to HSA and caused photosensitized oxidation of the tryptophan residue. The protein damage was enhanced in deuterium oxide and inhibited by sodium azide, a physical quencher of singlet oxygen, suggesting the contribution of singlet oxygen. However, an excess amount of sodium azide could not completely inhibit protein damage. These findings suggest the partial contribution of another mechanism to the protein damage, possibly the electron transfer mechanism. The Gibbs free energy of the electron transfer mechanism showed that electron transfer-mediated tryptophan oxidation by photoexcited H2TMPyP is more advantageous than that by ZnTMPyP. Actually, the quantum yield of protein damage through electron transfer by H2TMPyP was larger than that by ZnTMPyP. In addition, this study demonstrated that the association between porphyrin and protein plays an important role in photosensitized protein damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.