Abstract

Tetrakis-2,3-[5,6-di-(2-pyridyl)pyrazino]porphyrazinatopalladium(II) [Py 8TPyzPzPd] ( 1) and the corresponding pentapalladated species [(PdCl 2) 4Py 8TPyzPzPd] ( 2), dissolved (c approximately 10 (-5)-10 (-6) M) in preacidified dimethylformamide ([HCl] approximately 10 (-4) M), behave as potent photosensitizing agents for the production of singlet oxygen, (1)O 2, with Phi Delta values of 0.89 +/- 0.04 and 0.78 +/- 0.05, respectively. The related octacation [(2-Mepy) 8TPyzPzPd] (8+) ( 3), examined under similar experimental conditions, exhibits lower Phi Delta values, that is, 0.29 +/- 0.02 (as an iodide salt) and 0.32 +/- 0.02 (as a chloride salt). In view of the very high values of Phi Delta, the photophysics of complexes 1 and 2 has been studied by means of pump and probe experiments using ns laser pulses at 532 nm as excitation source. Both complexes behave like reverse saturable absorbers at 440 nm because of triplet excited-state absorption. The lifetimes of the triplet excited states are 65 and 96 ns for the penta- and mononuclear species, respectively. Fluorescence quantum yields (Phi f) are approximately 0.1% for both 1 and 2. Such low Phi f values for the two complexes are consistent with the high efficiency of triplet excited-state formation and the measured high yields of (1)O 2. Time-dependent density-functional theory (TDDFT) calculations of the lowest singlet and triplet excited states of the mono- and pentapalladated species help to rationalize the photophysical behavior and the relevant activity of the complexes as photosensitizers for the (1)O 2 ( (1)Delta g) generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.