Abstract

Species with different reproductive schedules may differ in how they respond to the annual change in photoperiod (the adaptive specialization hypothesis). Seasonally breeding species are predicted to use photorefractoriness to terminate reproduction prior to inclement conditions in autumn and winter, whereas opportunistically breeding species may not exhibit photorefractoriness. We tested for absolute photorefractoriness in four species of cardueline finch that differ in their reproductive schedules: opportunistically breeding red crossbills, flexibly breeding pine siskins, and seasonally breeding Cassin's finches and gray-crowned rosy-finches. Field observations indicated that all four species regress their gonads and begin prebasic feather molt in late summer or autumn. However, exposure to a long day photoperiod in autumn (24 h:0 h L:D) resulted in elevation of gonadotropins and testicular recrudescence in all species except Cassin's finches. Thus, by this criterion, some of the seasonally breeding species tested here did not exhibit absolute photorefractoriness. These results indicate that phylogenetic history needs to be taken into account when considering the adaptive nature of photoperiod response systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.