Abstract

Abstract Several widely used tests for a changing mean exhibit nonmonotonic power in finite samples, due to “incorrect” estimation of nuisance parameters under the alternative. In this paper, we study the issue of nonmonotonic power in testing for changing mean. We investigate the asymptotic power properties of the tests, using a new framework where alternatives are characterized as having “large” changes. The asymptotic analysis provides a theoretical explanation to the power problem. Modified tests that have monotonic power against a wide range of alternatives of structural change are proposed. Instead of estimating the nuisance parameters based on ordinary least squares residuals, the proposed tests use modified estimators, based on nonparametric regression residuals. It is shown that tests based on the modified long-run variance estimator provide an improved rate of divergence of the tests under the alternative of a change in mean. Tests for structural breaks based on such an estimator are able to remain consistent, while still retaining the same asymptotic distribution under the null hypothesis of constant mean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.